📚
Quanda
  • Content Model Catalog
  • KR STOCK
    • Market
      • Price Volume
      • Price Volume v2
      • Investor Activity
      • Credit
    • Financial
      • Financial Statements
      • Analyst Consensus
    • Quantitative
      • Descriptor
      • Factor
        • Factor (1)
        • Factor (2)
      • Regime
    • Event
      • Company Status
      • Corporate Actions
    • Economic
      • Indicators
    • Unstructured
      • Theme
        • Theme Analytics Metrics
        • Company Keyword
      • EWS (Early Warning Signal)
        • Korea Sentiment Index
        • Korea EWS Index
        • Keyterm Sentiment Analytics Metrics
    • [Free] Open dataset
  • US ETF
    • Market
      • Price Volume
  • US STOCK
    • Market
      • Price Volume
      • Classification
      • Universe
    • Financial
      • Financial Statement
      • PIT Financial Statement
    • Quantitative
      • Factor
    • Unstructured
      • EWS (Early Warning Signal)
        • US sentiment index
        • US EWS Index
        • Keyterm Sentiment Analytics Metrics
  • VN STOCK
    • Market
      • Price Volume
      • Classification
    • Financial
      • Ratio TTM
  • VN Stock (deprecated)
    • Market
      • Price Volume
      • Classification
    • Event
      • Corporate Actions
  • ID STOCK
    • Market
      • Price Volume
      • Classification
  • CRYPTO SPOT
    • Market
      • Price Volume
  • CRYPTO FUTURE
    • Market
      • Price Volume
Powered by GitBook
On this page
  • Example code
  • Metadata
  • Item List
  • All Sentiment
  • Negative Sentiment
  • Neutral Sentiment
  • Positive Sentiment

Was this helpful?

Edit on GitHub
  1. KR STOCK
  2. Unstructured
  3. EWS (Early Warning Signal)

Keyterm Sentiment Analytics Metrics

This dataset provides metrics on news articles, segmented by sentiment (positive, negative, neutral) and category, including rates and counts of materials.

Example code

from finter.data import ContentFactory
cf = ContentFactory("kr_stock", 20240101, 20240201)

# sentiment_us category
df = cf.get_df("all-N_of_mat_key[all_cat]", cagegory='sentiment')

# sentiment_exp_us category
df = cf.get_df("all-N_of_mat_key[all_cat]", cagegory='sentiment_exp')

Metadata

Valid From
Delivery Schedule
Time Zone
Data Frequency

2005-01-01

UTC 00 21 * * *

Asia/Seoul

1d

Item List

  • Use sentiment category for Korea

  • Use sentiment_exp category for Korea Expanded

All Sentiment

  • all-N_of_mat_key[all_cat]: Number of total key terms for overall sentiment on the given day in Korea.

  • all-N_of_mat_key[in_cat]: Number of matching key terms for overall sentiment in the specified category on the given day in Korea.

  • all-N_of_news: Number of total news articles for overall sentiment on the given day in Korea.

  • all-mat_key_rate[in_cat%all_cat]: Category key term rate for overall sentiment on the given day in Korea.

Negative Sentiment

  • neg-N_of_mat_key[all_cat]: Number of total key terms for negative sentiment on the given day in Korea.

  • neg-N_of_mat_key[in_cat]: Number of matching key terms for negative sentiment in the specified category on the given day in Korea.

  • neg-N_of_news: Number of total news articles for negative sentiment on the given day in Korea.

  • neg-mat_key_rate[in_cat%all_cat]: Category key term rate for negative sentiment on the given day in Korea.

Neutral Sentiment

  • neu-N_of_mat_key[all_cat]: Number of total key terms for neutral sentiment on the given day in Korea.

  • neu-N_of_mat_key[in_cat]: Number of matching key terms for neutral sentiment in the specified category on the given day in Korea.

  • neu-N_of_news: Number of total news articles for neutral sentiment on the given day in Korea.

  • neu-mat_key_rate[in_cat%all_cat]: Category key term rate for neutral sentiment on the given day in Korea.

Positive Sentiment

  • pos-N_of_mat_key[all_cat]: Number of total key terms for positive sentiment on the given day in Korea.

  • pos-N_of_mat_key[in_cat]: Number of matching key terms for positive sentiment in the specified category on the given day in Korea.

  • pos-N_of_news: Number of total news articles for positive sentiment on the given day in Korea.

  • pos-mat_key_rate[in_cat%all_cat]: Category key term rate for positive sentiment on the given day in Korea.

PreviousKorea EWS IndexNext[Free] Open dataset

Last updated 10 months ago

Was this helpful?