Keyterm Sentiment Analytics Metrics
This dataset provides metrics on news articles, segmented by sentiment (positive, negative, neutral) and category, including rates and counts of materials.
Example code
from finter.data import ContentFactory
cf = ContentFactory("us_stock", 20240101, 20240201)
# sentiment_us category
df = cf.get_df("all-mat_cat_rate", cagegory='sentiment_us')
# sentiment_exp_us category
df = cf.get_df("all-mat_cat_rate", cagegory='sentiment_exp_us')
Metadata
2005-01-01
UTC 00 21 * * *
Asia/Seoul
1d
Item List
Use
sentiment_us
category for USUse
sentiment_exp_us
category for US Expanded
All Sentiment
all-mat_cat_rate
: Category rate for overall sentiment on the given day in the U.S.all-N_of_mat_cat_each
: Number of news articles for overall sentiment in each category on the given day in the U.S.all-N_of_news
: Number of total news articles for overall sentiment on the given day in the U.S.
Negative Sentiment
neg-mat_cat_rate
: Category rate for negative sentiment on the given day in the U.S.neg-N_of_mat_cat_each
: Number of news articles for negative sentiment in each category on the given day in the U.S.neg-N_of_news
: Number of total news articles for negative sentiment on the given day in the U.S.
Neutral Sentiment
neu-mat_cat_rate
: Category rate for neutral sentiment on the given day in the U.S.neu-N_of_mat_cat_each
: Number of news articles for neutral sentiment in each category on the given day in the U.S.neu-N_of_news
: Number of total news articles for neutral sentiment on the given day in the U.S.
Positive Sentiment
pos-mat_cat_rate
: Category rate for positive sentiment on the given day in the U.S.pos-N_of_mat_cat_each
: Number of news articles for positive sentiment in each category on the given day in the U.S.pos-N_of_news
: Number of total news articles for positive sentiment on the given day in the U.S.
Last updated
Was this helpful?